Home
Class 12
MATHS
[" 7.If "cos^(-1)x+cos^(-1)y=(pi)/(2)" ,...

[" 7.If "cos^(-1)x+cos^(-1)y=(pi)/(2)" ,then prove that: "],[qquad x^(2)+y^(2)=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y=pi/2 then prove that cos^(-1)x=sin^(-1)y

cos^(-1)x+cos^(-1)y+cos^(-1)z=pi ,then prove that, x^2+y^2+z^2+xyz=1

If cos^(-1).(x)/(2) + cos^(-1).(y).(3) = (pi)/(6) , then prove that (x^(2))/(4) - (xy)/(2sqrt3) + (y^(2))/(9) = (1)/(4)

If cos^(-1).(x)/(2) + cos^(-1).(y).(3) = (pi)/(6) , then prove that (x^(2))/(4) - (xy)/(2sqrt3) + (y^(2))/(9) = (1)/(4)

If cos^(-1).(x)/(2) + cos^(-1).(y)/(3) = (pi)/(6) , then prove that (x^(2))/(4) - (xy)/(2sqrt3) + (y^(2))/(9) = (1)/(4)

If cos^(-1).(x)/(2) + cos^(-1).(y)/(3) = (pi)/(6) , then prove that (x^(2))/(4) - (xy)/(2sqrt3) + (y^(2))/(9) = (1)/(4)

If cos^(-1) x +cos^(-1)y +cos^(-1)z =pi , then prove that x^(2)+y^(2)+z^(2)+2xyz=1 .

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^(2)+y^(2)+z^(2)+2xyz=1

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi" , prove that " x^(2) + y^(2)+ z^(2) + 2xyz = 1 .

If cos^(-1)x+cos^(-1)y+cos^(-1)=pi, prove that x^(2)+y^(2)+z^(2)+2xyz=1