Home
Class 12
MATHS
int tan^(4) x dx=...

`int tan^(4) x dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) tan^(5) x dx=

int_(0)^(pi//4) tan^(6) x dx=

Evalute the following integrals int tan^(4) x sec^(2) x dx

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

Evaluate the integerals. int tan^(4) xsec ^(2) x dx , x in I sub R \\ { ((2n +1)pi)/(2): n in Z}.

int _(0) ^(pi//4) tan^(2) x " " dx=

int tan x sec^(4)dx

What is int tan^(2) x sec^(4) x dx equal to ?

Evaluate int tan ^(2) x sec^(4) x dx