Home
Class 12
MATHS
lim(x rarr4)(x^(2)-7x+12)/(x^(2)-3x-4)...

lim_(x rarr4)(x^(2)-7x+12)/(x^(2)-3x-4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x rarr5)(x^(2)-7x+12)/(x^(2)-3x-4)

lim_(x rarr1)(x^(2)-7x+12)/(x^(2)+4-3x-4)

lim_(x rarr2)(3x^(2)-x-10)/(x^(2)-4) Evaluate lim-10^(*)-2

COnsider the following statements and identify the correct options ( i ) lim_(x rarr4)((2x)/(x-4)-(8)/(x-4))=lim_(x rarr4)(2x)/(x-4)-lim_(x rarr4)(8)/(x-4) (ii) lim_(x rarr1)(x^(2)+6x-7)/(x^(2)+5x-6)=(lim_(x rarr1)(x^(2)+6x-7))/(lim_(x rarr1)(x^(2)+5x-6))

Obtain the value of lim_(x rarr4)(x^(2)-16)/(x^(3)-x^(2)-10x-8)

lim_(x rarr1)(x^(2)-3x+2)/(x^(3)-4x+3)

Evaluate the following limit: (lim)_(x->4)(x^2-7x+12)/(x^2-3x-4)

lim_(x rarr2)(x^(3)-8)/(x^(2)-4)

lim_(x rarr4)((x^(2)-x-12)^(15))/((x^(3)-8x^(2)+16x)^(7))

Consider following statements and identify correct options (i) lim_(x rarr4)((2x)/(x-2)-(8)/(x-4))=lim_(x rarr4)((2x)/(x-4))-lim_(x rarr4)((8)/(x-4)) (ii) lim_(x rarr1)((x^(2)+6x-7)/(x^(2)+5x-6))=(lim_(x rarr1)(x^(2)+6x-7))/(lim_(x rarr1)(x^(2)+5x-6))