Home
Class 12
MATHS
[" 3.Using properties of determinants,sh...

[" 3.Using properties of determinants,show that "],[|[a,a+b,a+2b],[a+2b,a,a+b],[a+b,a+2b,a]|=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

a a+b a+2b 10. Using properties of determinants, show that |[a,a+b,a+2b],[a+2b,a,a+b],[a+b,a+2b,a]|=9b^2(a+b)

Using properties of determinant show that : |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9b^2(a+b)

Using properties of determinats show that |{:(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a):}|=9b^2(a+b)

Using properties of determinants, show that |(b+a,a,a),(b,c+a,b),(c,c,a+b)|=4abc

Using the properties of determinants show that : |[[a^2, b^2, c^2],[bc,ca,ab],[a,b,c]]|=(a-b)(b-c)(c-a)(ab+bc+ca)

By using properties of determinants. Show that: |[a^2+1,a b, a c],[ a b,b^2+1,b c],[c a, c b, c^2+1]|=(1+a^2+b^2+c^2)

3. Using properties of determinants, show that :|[b+c,a,b] , [c+a,c,a] , [a+b,b,c]| = (a + b + c) (a-c)^2

Using properties of determinant show that |(a+b,a,b),(a,a+c,c),(b,c,b+c)|=4abc

By using properties of determinants. Show that: |[1+a^2-b^2, 2a b,-2b],[2a b,1-a^2+b^2, 2a],[2b,-2a,1-a^2-b^2]|=(1+a^2+b^2)^3

Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca] , [1 , c , a b]|=(a-b)(b-c)(c-a)