Home
Class 11
MATHS
Find the set of values of alpha in the i...

Find the set of values of `alpha` in the interval [ `pi/2,3pi/2`], for which the point (`sin alpha, cos alpha`)does not exist outside the parabola `2 y^2 + x - 2 = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the set of values of alpha in the interval [(pi)/(2),3(pi)/(2)1, for which the point (sin alpha,cos alpha)does not exist outside the parabola 2y^(2)+x-2=0

The number of value of alpha in the interval [-pi,0] satisfying sin alpha +int_(alpha )^(2alpha) cos 2 x dx =0 , then

The number of value of alpha in the interval [-pi,0] satisfying sin alpha +int_(alpha )^(2alpha) cos 2 x dx =0 , then

The number of value of alpha in the interval [-pi,0] satisfying sin alpha +int_(alpha )^(2alpha) cos 2 x dx =0 , then

The number of value of alpha in the interval [-pi,0] satisfying sin alpha +int_(alpha )^(2alpha) cos 2 x dx =0 , then

The number of value of alpha in the interval [-pi,0] satisfying sin alpha +int_(alpha )^(2alpha) cos 2 x dx =0 , then

The number of values of alpha in [0,2 pi] for which 2sin^(3)alpha-7sin^(2)alpha+7sin alpha=2, is:

The number of values of alpha in [0,2pi] for whilch 2sin^(3)alpha-7sin^(2)alpha+7 sin alpha=2 , is