Home
Class 12
MATHS
log(x)(4x-3)=2...

log_(x)(4x-3)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

If lamda_(1) is the product of values of x satisfy the equation (x)^(log_(3)x)=(x^(9))/((3)^(20)) and lamda_(2) is the number of integers in the solution set of the inequality log_(x)(4x-3)ge2 , the ((lamda_1)/2187+lamda_(2)) equals

Solve log_(x)(2x-(3)/(4))<2

The function f(x) is defined by f(x)={log_(4x-3)(x^(2)-2x+5) if 3/41, ,4 when x=1}

x-2|^(log)-2x^(3-3log_(x)4)=(x-2)^(3)

Solve log_((pi)/(2))(sqrt(x))+2log_(4x)(x^(2))=3log_(2x)(x^(3))

Solve: 4log_((x)/(2))(sqrt(x))+2log_(4x)(x^(2))=3log_(2x)(x^(3))

The global maximum value of f(x)=log_(10)(4x^(3)-12x^(2)+11x-3) . X in [2,3] , is

The global maximum value of f(x0=log_(10)(4x^(3)-12x^(2)+11x-3),x in[2,3] is -(3)/(2)log_(10)3(b)1+log_(10)3log_(10)3(d)(3)/(2)log_(10)3

Solve :3log_(x)(4)+2log_(4x)4+3log_(16x)4=0

Solve log_(2x)2+log_(4)2x=-3/2