Home
Class 10
MATHS
" (ii) "(tan(90^(@)-A)*cot A)/(cosec^(2)...

" (ii) "(tan(90^(@)-A)*cot A)/(cosec^(2)A)-cos^(2)A=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: (tan(90^(0)-A)cot A)/(cos ec^(2)A)-cos^(2)A=0

(tan(90^@-theta) cot theta)/(cosec^2 theta)-cos^2 theta=0

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

Prove the following identities : ((1 + tan^(2) A) cot A)/(cosec^(2) A) = tan A

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

Prove that : (sin A - cos A) (1 + tan A + cot A) = (sec A)/ (cosec^(2) A) - (cosec A)/ (sec^(2) A)

Calculate : (1-sin^(2)30^(@))/(1+sin^(2)30^(@))xx(cos^(2)60^(@)+cos^(2)30^(@))/("cosec"^(2)90^(@)-cot^(2)90^(@)) divide (sin60^(@) tan30^(@))

If o^(@)ltAlt90^(@) , then the value of tan^(2)A+cot^(2)A-sec^(2)A"cosec"^(2)A is