Home
Class 9
MATHS
1/((sqrt2+sqrt3)(sqrt5+sqrt6)) in ration...

`1/((sqrt2+sqrt3)(sqrt5+sqrt6))` in rationalised form is

Promotional Banner

Similar Questions

Explore conceptually related problems

(3sqrt(2))/(sqrt(6)+sqrt(3)) rationalise

For (1)/(asqrt(x)+bsqrt(y)) the rationalising factor is a asqrt(x)-bsqrt(y) . If x=(7sqrt(3))/(sqrt(10)+sqrt(3))-(3sqrt(2))/(sqrt(15)+3sqrt(2))-(2sqrt(5))/(sqrt(6)+sqrt(5)) , then value of x^(4)+x^(2) is

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

Rationalise the denominator of (sqrt(6)+sqrt(3))/(sqrt(6)-sqrt(3)) and find its value of sqrt(2)=1.414

Rationalise the denominator of each of the following (sqrt(3)+1)/(sqrt(2))( ii) (sqrt(2)+sqrt(5))/(sqrt(3))( iii) (3sqrt(2))/(sqrt(5))

Rationalise the denominator of each of the following (i) (sqrt(3)+\ 1)/(sqrt(2)) (ii) (sqrt(2)+\ sqrt(5))/(sqrt(3)) (iii) (3sqrt(2))/(sqrt(5))

Simplify each of the following by rationalising the denominator,(1)/(5+sqrt(2)) (ii) (5+sqrt(6))/(5-sqrt(6)) (iii) (7+3sqrt(5))/(7-3sqrt(5)) (iv) (2sqrt(3)-sqrt(5))/(2sqrt(2)+3sqrt(3))

Simplify each of the following by rationalising the denominator; 1/(5+sqrt(2)) (ii) (5+sqrt(6))/(5-sqrt(6)) (iii) (7+3sqrt(5))/(7-3sqrt(5)) (iv) (2sqrt(3)-sqrt(5))/(2sqrt(2)+3sqrt(3))

Rationalise the denominator of (i) 1/sqrt7 (ii) 1/(sqrt5 + sqrt3) (iii) 1/(sqrt7 -1) (iv) 1/(sqrt(7) - sqrt(6))

Rationalise the denominators of the following : i) (1)/(3+sqrt(2)) ii) (1)/(sqrt(7)-sqrt(6)) iii) (1)/(sqrt(7)) iv) (sqrt(6))/(sqrt(3)-sqrt(2))