Home
Class 10
MATHS
triangle ABC में, यदि AD माध्यिका है तो...

`triangle ABC` में, यदि AD माध्यिका है तो सिद्ध कीजिए कि `AB^(2) + AC^(2) = 2(AD^(2) + BD^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC if AD is the median the show that AB^(2) +AC^(2)=2(AD^(2)+BD^(2))

In an acute angled triangle ABC, AD is the median in it. Prove that : AD^(2) = (AB^(2))/2 + (AC^(2))/2 - (BC^(2))/4

In an equilateral triangle ABC, AD _|_ BC . Prove that : AB^(2) + CD^(2) = 5/4 AC^(2)

In Delta ABC , AD bot BC and AD^(2)= BD xx CD . Prove that AB^(2) + AC^(2) = (BD + CD)^(2)

In figure, AD is a median of a triangle ABC and AM bot BC. Prove that AC ^(2) + AB ^(2) = 2 AD ^(2) + (1)/(2) BC ^(2).

In triangle ABC , AD is the median and G is a point on AD such that AG : GD = 2 : 1, then ar (triangle BDG): (triangle ABC) is equal to : त्रिभुज ABC में, AD माध्यिका है तथा G, AD पर ऐसा बिंदु है कि AG : GD = 2 : 1 है, तो ar (triangle BDG): (triangle ABC) का मान ज्ञात करें |

In a Delta ABC , angleB is an acute-angle and AD bot BC Prove that : (i) AC^(2) = AB^(2) + BC^(2) - 2 BC xx BD (ii) AB^(2) + CD^(2) = AC^(2) + BD^(2)

In Delta ABC, AD_|_ BC . Prove that AB^(2) - BD^(2) =AC^(2) -CD^(2)

In any triangle ABC,prove that AB^(2)+AC^(2)=2(AD^(2)+BD^(2)), where D is the midpoint of BC .

In triangle ABC ,D is a median from A to BC, AB = 6cm , AC =8cm and BC = 10cm The length of median AD (in cm ) is : triangle ABC में, D, A से BC पर एक पर स्थित माध्यिका है।, AB = 6 सेमी, AC=8 सेमी और BC = 10 सेमी है। माध्यिका AD की लंबाई (सेमी में) है