Home
Class 9
MATHS
27^(x)=(9)/(3^(x))du" di "x" eitil."...

27^(x)=(9)/(3^(x))du" di "x" eitil."

Promotional Banner

Similar Questions

Explore conceptually related problems

If 27^(x)=(9)/(3^(x)), find x

27^(x)=(9)/(3^(x)), Find the value of x

If 27^x=9/(3^x), find xdot

If 27^x=9/(3^x), find xdot

if f(x)=((e^((x+3)ln27))^(x/27)-9)/(3^x-27) , x 3 if lim_(x->3)f(x) exist then lmbda is

If 27^x=9/3^x , find x.

int((27)^(1+x)+9^(1-x))/(3^(x))

If f(x)={(((exp{(x+3)ln27})^(1/27[x])-9)/(3^x-27), x lt 3), (lamda.((1-cos(x-3)))/((x-3)tan(x-3)), x gt 3):} is continuous at x = 3, then the value of 9lambda must be

27^(x)times9^(2x)=3^(10)

lim_(x rarr3)((x^(3)+27)ln(x-2))/((x^(2)-9)) is equal to