Home
Class 12
MATHS
If x,y,a,b,c,d are real and x+iy= sqrt((...

If x,y,a,b,c,d are real and `x+iy= sqrt((a+ib)/(c+id))" then "(x^(2)+y^(2))^(2)=`

A

`(a^(2)+b^(2))/(c^(2)+d^(2))`

B

`(a^(2)-b^(2))/(c^(2)-d^(2))`

C

`(a^(2)-c^(2))/(b^(2)-d^(2))`

D

`(a^(2)+b^(2))/((c+d)^2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|194 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|194 Videos
  • BINOMIAL THEOREM

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|51 Videos
  • CONIC SECTIONS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE - HYPERBOLA|9 Videos

Similar Questions

Explore conceptually related problems

If x+iy = (a+ib)/(a-ib) , prove that x^(2) + y^(2)=1 .

If a,b,x,y are real number and x,y gt 0 , then (a^(2))/(x)+(b^(2))/(y) ge ((a+b)^(2))/(x+y) so on solving it we have (ay-bx)^(2) ge 0 . Similarly, we can extend the inequality to three pairs of numbers, i.e, (a^(2))/(x)+(b^(2))/(y)+(c^(2))/(z) ge ((a+b+c)^(2))/(x+y+z) Now use this result to solve the following questions. The value of (a^(2)+b^(2))/(a+b)+(b^(2)+c^(2))/(b+c)+(a^(2)+c^(2))/(a+c) is

If x-iy= sqrt((a-ib)/(c-id)) , prove that x^(2)+y^(2)=(a^(2)+b^(2))/(c^(2)+d^(2)) .

If a ,b ,c ,d ,e , and f are in G.P. then the value of |((a^2),(d^2),x),((b^2),(e^2),y),((c^2),(f^2),z)| depends on (A) x and y (B) x and z (C) y and z (D) independent of x ,y ,and z

If x ,y ,a n dz are real and different and u=x^2+4y^2+9z^2-6y z-3z x-2x y ,t h e nu is always a. non-negative b. zero c. non-positive d. none of these

The minimum value of (x^4+y^4+z^2)/(x y z) for positive real numbers x ,y ,z is (a) sqrt(2) (b) 2sqrt(2) (c) 4sqrt(2) (d) 8sqrt(2)

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (a) (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (c) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))

If y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x)) ,then (dy)/(dx) is equal to (a) (a y)/(xsqrt(a^2-x^2)) (b) (a y)/(sqrt(a^2-x^2)) (c) (a y)/(xsqrt(a^2-x^2)) (d) none of these