Home
Class 12
MATHS
tan^(-1)(1)/(sqrt(x^(2)-1))=...

tan^(-1)(1)/(sqrt(x^(2)-1))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .

Simplify tan^(-1)((sqrt(1+x^2)-1)/x)

Solve y=tan^(-1)((sqrt(1+x^2)-1)/x)

Let y_1=tan^(-1)((sqrt(1+x^2)-1)/x) and y_2=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) then (dy_1)/(dy_2)=

If tan^(-1)(sqrt(1+x^(2))-1)/x=4^(0) , then

if tan^(-1)((sqrt(1+x^(2))-1)/(x))=(pi)/(45) then:

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))