Home
Class 14
MATHS
" 8e "tan^(-)(sqrt(1+x^(2))-x)=?...

" 8e "tan^(-)(sqrt(1+x^(2))-x)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x+sqrt(1+x^(2)))=

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2))) at x=0 is (1)/(8)(b)(1)/(4)(c)(1)/(2)(d)1

tan[(sqrt(1+x^(2))-1)/x] =

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

tan^(-1)[x/sqrt(a^(2)-x^(2))]=

Find dy/dx : y = e ^(tan^-1(x/(sqrt(1-x^2)))

Differentiate tan^(-1)x/(1+sqrt((1-x^2))) +{2tan^(-1)sqrt(((1-x)/(1+x)))}sinwdotrdottdotxdot

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then