Home
Class 11
MATHS
" Q.No.10) If "x^(2)+6xy+y^(2)=10" then ...

" Q.No.10) If "x^(2)+6xy+y^(2)=10" then show that "(d^(2)y)/(dx^(2))=(80)/((3x+y)^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+6xy+y^(2)=10, show that (d^(2)y)/(dx^(2))=(80)/((3x+y)^(3))

If x^(2)+xy-y^(2)=1," then "(x-2y)^(3)(d^(2)y)/(dx^(2))=

If x^(3)+y^(3)-3axy=0 then prove that (d^(2)y)/(dx^(2))=(2a^(2)xy)/((ax-y^(2))^(3))

If x^2 + 6xy + y^2 = 10, show that ( d^2 y)/(d x^2 ) = frac{80}{ (3x+y)^3 }

If y=(log x)/(x), show that (d^(2)y)/(dx^(2))=(2log x-3)/(x^(3))

If y=(log x)/(x), show that(d^(2)y)/(dx^(2))=(2log x-3)/(x^(3))

If y=2sin x+3cos x, show that (d^(2)y)/(dx^(2))+y=0

If y=2sin x+3cos x, show that (d^(2)y)/(dx^(2))+y=0

If y= x ^(3) +5x^(2) -3x +10 ,then (d^(2)y)/(dx^(2))=

If y=sin^(-1)x , show that (d^2y)/(dx^2)=x/((1-x^2)^(3//2))