Home
Class 12
MATHS
If f:R in R is continuous and differenti...

If `f:R in R` is continuous and differentiable function such that
`int_(-1)^(x) f(t)dt+f'''(3) int_(x)^(1) dt=int_(1)^(x) t^(3)dt-f'(1)int_(0)^(x) t^(2)dt+f'(2) int_(x)^(3) r dt`, then the value of f'(4), is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R in R is continuous and differentiable function such that int_(-1)^(x) f(t)dt+f'''(3) int_(x)^(0) dt=int_(1)^(x) t^(3)dt-f'(1)int_(0)^(x) t^(2)dt+f'(2) int_(x)^(3) r dt , then the value of f'(4), is

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If int_(0)^(x) f(t)dt=x+int_(x)^(1)t f(t)dt , find the value of f(1).

If int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is