Home
Class 11
MATHS
(ab)^(n)=a^(n)b^(n)...

(ab)^(n)=a^(n)b^(n)

Promotional Banner

Similar Questions

Explore conceptually related problems

Fifth law If ab are non-zero rational numbers and n is an integer then ((a)/(b))^(n)=(a^(n))/(b^(n))

If A=[ab01], prove that A^(n)=[a^(n)b((a^(n)-1)/(a-1))01] for every positive integer n.

Evaluate value |[b^(n)+c^(n),a^(n),a^(n)b^(n),c^(n)+a^(n),b^(n)c^(n),c^(n),a^(n)+b^(n)

If slope of one of the lines represented by ax^(2)+2hxy+by^(2)=0 is n^(th) power of the other then prove that (ab^(n))^((1)/(n+1))+(a^(n)b)^((1)/(n+1))+2h=0

If one root is nth power of the other root of this equation x^(2)-ax+b=0 then, b^(n/(n+1))+b^(1/(n+1)) = (A) a (B) a^(n) (C) b^(n) (D) ab

If M(a, b)=a^(2)+b^(2)+ab,N(a, b)=a^(2)+b^(2)-ab . Find the value of M(7, N(9, 4)) .

Which of the following sequence is an A.P (A)f(n)=ab+b,n in N(B)f(n)=kr^(n),n in N(C)f(n)=(an+b)kr^(n),n in N(D)f(n)=(1)/(a(n+(b)/(n))),n in N

If n>3 and a,b in R ,then the value of ab-n(a-1)(b-1)+(n(n-1))/(1.2)(a-2)(b-2)-.....+(-1)^(n)(a-n)(b-n) is equal to

Sixth law If ab are non-zero rational numbers and n is a positive integer then ((a)/(b))^(-n)=((b)/(a))^(n)