Home
Class 12
MATHS
If 5(tan^2x - cos^2x)=2cos 2x + 9, then ...

If `5(tan^2x - cos^2x)=2cos 2x + 9`, then the value of cos4x is

Promotional Banner

Similar Questions

Explore conceptually related problems

If 5(tan^(2)x-cos^(2)x)=2cos2x+9, then the value of cos4x is: (2)/(9)(2)-(7)/(9)(3)-(3)/(5)(4)(1)/(3)

If 5(tan^(2)x-cos^(2)x)=2cos2x+9 , then the value of cos4x is

5(tan^(2)x-cos^(2)x) = 2cos2x +9 , then the value of cos4x is:

If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9 , then the value of cos 4 x is

If (sin x + cos x)/(sin x - cos x) = (6)/(5) , then the value of (tan^(2) x + 1)/(tan^(2) x-1) is :

If cos4x=1+ksin^2x cos^2x , then write the value of kdot

If cos(pi/4-x)cos2x+sinxsin2xsecx=cos x sin 2x sec x+cos(pi/4+x)cos 2x then possible value of sec x is

If sin x=cos^2x ,\ then write the value of cos^2x\ (1+cos^2x)dot

6tan^(2)x-2cos^(2)x=cos2x if cos2x=