Home
Class 12
MATHS
tan^(3)2x sec2x...

tan^(3)2x sec2x

Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate the following functions: tan^3 2x sec(2x)

Evaluate: (i) int tan^(3)x sec^(2)xdx (ii) int tan x sec^(4)xdx

Find the integrals of the function: tan^3(2x) sec 2x

The value of int tan^(3)(2x)sec(2x)dx is equal to:

int (3tan^2x+2 sec^2x)/(tan^3x+2tanx+9)^2 dx

Evaluate (i) int tan^(3/2)x sec^(2)xdx (ii) int(x^(3))/((x^(2)+1)^(3))dx

General solution of tan^(2)x+sec2x=1 is

If |[sec^2x, tanx, tan^2x] , [tan^2x, sec^2x, tanx] , [tanx, tan^2x, sec^2x]| is expanded in the power of tanx then the constant is

Find the integral tan ^3 2 x sec 2 x^