Home
Class 12
MATHS
int(e)^(e^(2))log xdx...

int_(e)^(e^(2))log xdx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(e )^(e^(2))log x dx =

int_(1)^(e)log xdx=.......

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

int_(1)^(2)x log xdx

int_(0)^((pi)/(2))log sin xdx=int_(0)^((pi)/(2))log cos xdx=(1)/(2)(pi)log((1)/(2))

Evaluate :int_(e)^(e^(2)){(1)/(log x)-(1)/((log x)^(2))}dx