Home
Class 11
MATHS
किन्ही दो सम्मिश्र संख्याएँ z 1 ...

किन्ही दो सम्मिश्र संख्याएँ ` z _ 1 ` तथा ` z _ 2 ` के लिए साबित कीजिये कि
` |z _ 1 + z _ 2 |^ 2 + | z _ 1 - z _ 2 |^ 2 = 2 [|z _ 1 |^ 2 + | z _ 2 |^ 2 ] `

Promotional Banner

Similar Questions

Explore conceptually related problems

z_ (1) 8zz_ (2), | 1-z_ (1) (& z) _ (2) | ^ (2) - | z_ (1) -z_ (2) | ^ (2) = (1- | z_ (1) | ^ (2)) (1- | z_ (2) | ^ (2))

Prove that |z_(1) + z_(2)|^(2) + |z_(1)-z_(2)|^(2)=2|z_(1)|^(2) + 2|z_(2)|^(2)

If z_1 , and z_2 be two complex numbers prove that |z_1+z_2|^2+|z_1-z_2|^2=2[|z_1|^2+|z_2|^2]

Prove that |z_1+z_2|^2+|z_1-z_2|^2 =2|z_1|^2+2|z_2|^2 .

For any two complex numbers z_1 and z_2 prove that: |\z_1+z_2|^2 +|\z_1-z_2|^2=2[|\z_1|^2+|\z_2|^2]

If z_1,z_2 in C , show that (z_1+ z_2)^2= z_1^2+2 z_1 z_2+ z_2^2 .

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(1) + z_(2)|^(2) + |z_(1)-z_(2)|^(2)= 2(|z_(1)|^(2) + |z_(2)|^(2))

If |z_1|=1,|z_2|=1 then prove that |z_1+z_2|^2+|z_1-z_2|^2 =4.

For any two complex numbers z_1 and z_2 prove that: |\z_1+z_2|^2=|\z_1|^2+|\z_2|^2+2Re bar z_1 z_2