Home
Class 12
MATHS
If f(x)=a x^2+b x+a^2+b^2+c^2-a b-b c-c ...

If `f(x)=a x^2+b x+a^2+b^2+c^2-a b-b c-c a ,w h e r ea ,b ,c` are distinct reals, has imaginary roots then (a) `2(a-b)+(a-b)^2+(b-c)^2+(c-a)^2>0` (b) `f(0)>0` (c) `f(-1)>0` (d)`f(0)<0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=a x^2+b x+a^2+b^2+c^2-a b-b c-c a ,w h e r ea ,b ,c are distinct reals, has imaginary roots then (a) (a-b)^2+(b-c)^2+(c-a)^2>0 (b) f(0)>0 (c) f(-1)>0 (d) f(0)<0

If f(x)=x^3+b x^2+c x+d and 0 < b^2 < c , then f(x) is

If f(x)=a x^2+b x+c ,g(x)=-a x^2+b x+c ,w h e r ea c!=0, then prove that f(x)g(x)=0 has at least two real roots.

a,b and c are non-zero distinct real numbers, common root of equations (a-b)x^(2)+(b-c)x+(c-a)=0c(a-b)x^(2)+a(b-c)x+b(c-a)=0 is

If 0 gt a gt b gt c and the roots alpha, beta are imaginary roots of ax^(2) + bx + c = 0 then

If a x^2+b x+c=0,a ,b ,c in R has no real zeros, and if c 0 (c) a >0

If a x^2+b x+c=0,a ,b ,c in R has no real zeros, and if c 0 (c) a >0

If ax^(2)+bx+c = 0 has no real roots and a, b, c in R such that a + c gt 0 , then