Home
Class 11
MATHS
If the equation a x^2+b x+c=0(a >0) ...

If the equation `a x^2+b x+c=0(a >0)` has two real roots `alphaa n dbeta` such that `alphalt-2` and `betagt2,` then which of the following statements is/are true? (a)`a-|b|+c<0` (b)`clt0,b^2-4a cgt0` (c) `4a-2|b|+c<0` (d) `9a-3|b|+c<0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the equation ax^(2)+bx+c=0, agt0 has two distinct real roots alpha and beta such that alpha lt-5 and betagt5 , then a) cgt0 b) c=0 c) c=(a+b)/(2) d) clt0

If the equation ax^(2) + 2 bx - 3c = 0 has no real roots and (3c)/(4) lt a + b , then

If the equation a x^2+2b x-3c=0 has no real roots and ((3c)/4) 0 c=0 (d) None of these

Let a,b,c be real. If ax^2+bx+c=0 has two real roots alpha,beta where alphalt-1 and betagt 1 ,then show that 1+c/a+abs(b/a)lt0 .

Given that a x^2+b x+c=0 has no real roots and a+b+c 0 d. c=0

Given that a x^2+b x+c=0 has no real roots and a+b+c 0 d. c=0

Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbeta,w h e r ealpha >-1 , then show that 1+c/a+|b/a|<0

Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbeta,w h e r ealpha >1 , then show that 1+c/a+|b/a|<0

Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbeta,w h e r ealpha >1 , then show that 1+c/a+|b/a|<0

Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbeta,w h e r ealpha >1 , then show that 1+c/a+|b/a|<0