Home
Class 11
MATHS
If the tangent drawn at point (t^2,2t) o...

If the tangent drawn at point `(t^2,2t)` on the parabola `y^2=4x` is the same as the normal drawn at point `(sqrt(5)costheta,2sintheta)` on the ellipse `4x^2+5y^2=20,` then `theta=cos^(-1)(-1/(sqrt(5)))` (b) `theta=cos^(-1)(1/(sqrt(5)))` `t=-2/(sqrt(5))` (d) `t=-1/(sqrt(5))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the tangent drawn at point (t^2,2t) on the parabola y^2=4x is the same as the normal drawn at point (sqrt(5)costheta,2sintheta) on the ellipse 4x^2+5y^2=20, then (a) theta=cos^(-1)(-1/(sqrt(5))) (b) theta=cos^(-1)(1/(sqrt(5))) (c) t=-2/(sqrt(5)) (d) t=-1/(sqrt(5))

If the tangent drawn at point (t^(2),2t) on the parabola y^(2)=4x is the same as the normal drawn at point (sqrt(5)cos theta,2sin theta) on the ellipse 4x^(2)+5y^(2)=20 ,then theta=cos^(-1)(-(1)/(sqrt(5)))( b) theta=cos^(-1)((1)/(sqrt(5)))t=-(2)/(sqrt(5))(d)t=-(1)/(sqrt(5))

If the tangent drawn at a point (t^(2),2t) on the parabola y^(2)=4x is same as normal drawn at (sqrt(5)cosalpha, 2sinalpha) on the ellipse (x^(2))/(5)+(y^(2))/(4)=1 , then which of following is not true ?

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 + t^(2)))), "find " (dy)/(dx)

If sin2 theta=cos3 theta and theta is an acute angle,then sin theta equal (a) (sqrt(5)-1)/(4) (b) -((sqrt(5)-1)/(4))( c) (sqrt(5)+1)/(4) (d) (-sqrt(5)-1)/(4)

x = cos^(-1)((1)/(sqrt(1+t^(2)))),y = sin^(-1)((t)/(sqrt(1+t^(2))))rArr(dy)/(dx) is equal to