Home
Class 12
MATHS
10" If "l(m,n)=int(0)^(1)t^(m)(1+t)^(n)d...

10" If "l(m,n)=int_(0)^(1)t^(m)(1+t)^(n)dt," then "l(m,n)" in terms of "l(m+1,n-1)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If I(m,n)=int_(0)^(1)t^(m)(1+t)^(n).dt, then the expression for I(m,n) in terms of I(m+1,n-1) is:

If I(m,n)=int_0^1 t^m(1+t)^n.dt , then the expression for I(m,n) in terms of I(m+1,n-1) is:

If I(m,n)=int_0^1 t^m(1+t)^n.dt , then the expression for I(m,n) in terms of I(m+1,n-1) is:

If I(m,n)=int_0^1 t^m(1+t)^n.dt , then the expression for I(m,n) in terms of I(m+1,n-1) is:

If I(m,n)=int_0^1 t^m(1+t)^n.dt , then the expression for I(m,n) in terms of I(m+1,n-1) is: (a) (2^(n))/(m+1)-n/(m+1)I(m+1,n-1) (b) n/(m+1)I(m+1,n-1) (c) (2^(n))/(m+1)+n/(m+1)I(m+1,n-1) (d) m/(m+1)I(m+1,n-1)

If I(m,n) = int_0^1 t^m (1 + t)^n dt , m, n in R , then I(m, n) is :

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If m, n in R , then the value of I(m,n)=int_(0)^(1) t^(m)(1+t)^(n)dt is -