Home
Class 10
MATHS
" Prove that "sec^(2)A-((sin^(2)A-2sin^(...

" Prove that "sec^(2)A-((sin^(2)A-2sin^(4)A)/(2cos^(4)A-cos^(2)A))=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(4)A-sin^(4)A=cos^(2)A-sin^(2)A .

sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)=1

Prove that: [1/(sec^(2)A-cos^(2)A)+1/("cosec"^(2)A-sin^(2)A)].sin^(2)A.cos^(2)A=(1-sin^(2)Acos^(2)A)/(2+sin^(2)Acos^(2)A)

Show that (i) sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A.cos^(2)A) (ii) (1)/(sec A-tan A)-(1)/(cos A)=(1)/(cos A)-(1)/(sec A + tan A)

Show that (i) sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A.cos^(2)A) (ii) (1)/(sec A-tan A)-(1)/(cos A)=(1)/(cos A)-(1)/(sec A + tan A)

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

Prove that : cos^(4) A - sin^(4) A = 2 cos^(2) A - 1

Prove that: cos^(6)A-sin^(6)A=cos2A(1-(1)/(4)sin^(2)2A)

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

Prove that (cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1