Home
Class 11
MATHS
Prove that n! (n+2) = n! +(n+1)!....

Prove that `n! (n+2) = n! +(n+1)!`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that n! + (n + 1)! = n! (n + 2)

Prove that ((2n)!) / (n!) = 2^n(2n - 1) (2n - 3) ... 5.3.1.

Prove that : (2n) ! = 2^n (n!)[1.3.5.... (2n-1)] for all natural numbers n.

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that : ^(2n)C_n = (2^n [1.3.5. ..........(2n-1)])/(n!) .

Prove that [n+1/2]^(n)>(n!)

Prove that ((n + 1)/(2))^(n) gt n!

Prove that ((n+1)/(2))^(n) gt (n!)

Prove that ((n + 1)/(2))^(n) gt n!

Prove that ((n + 1)/(2))^(n) gt n!