Home
Class 12
MATHS
The line x cos alpha+y sin alpha=p touch...

The line `x cos alpha+y sin alpha=p` touches the circle `x^(2)+y^(2)-2ax cos alpha-2ay sin alpha=0. then p=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of p so that the straight line x cos alpha + y sin alpha - p may touch the circle x^(2) + y^(2)-2ax cos alpha - 2ay sin alpha = 0 .

The line x cos alpha+y sin alpha=p will be a tangent to the circle x^(2)+y^(2)-2ax cos alpha-2ay sin alpha=0.1fp=

The line x sin alpha- ycos alpha = a touches the circle x^(2) +y^(2) =a^(2) ,then

If line x cos alpha + y sin alpha = p " touches circle " x^(2) + y^(2) =2ax then p =

Show that the straight line x cos alpha+y sin alpha=p touches the curve xy=a^(2), if p^(2)=4a^(2)cos alpha sin alpha

The line x sin alpha - y cos alpha =a touches the circle x ^(2) +y ^(2) =a ^(2), then,

If the line x cosalpha + y sin alpha = P touches the curve 4x^3=27ay^2 , then P/a=

If the line x cos alpha+y sin alpha=P touches the curve 4x^(3)=27ay^(2), then (P)/(a)=