Home
Class 12
MATHS
The value of cot(tan^(-1)2x+cot^(-1)2x) ...

The value of `cot(tan^(-1)2x+cot^(-1)2x)` is ...
(A) 0 (B) 2x (C) 4x (D) `pi+2x`
A
B
C
D

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate cot (tan^(-1) (2x) + cot^(-1) (2x))

The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx is (A) 1 (B) 0(C)-1(D)(pi)/(4)

The value of (cot((x)/(2))-tan(x)/(2))^(2)(1-2tan x cot2x) is 1 (b) 2(c)3(d)4

The value of int_-1^3 [tan^-1(x/(x^2+1))+tan^-1((x^2+1)/x)]dx= (A) pi/2 (B) 2pi (C) pi (D) pi/4

The value of x for which "sin"(cot^(-1)(1+x))="cos"(tan^(-1)x) is 1/2 (b) 1 (c) 0 (d) -1/2

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

The value of 2tan^(-1)(cos ec tan^(-1)x-tan cot^(-1)x) is equal to (a)cot ^(-1)x( b ) (cot^(-1)1)/(x) (c)tan ^(-1)x (d) none of these

If tan^-1 x+tan^-1 2x+tan^-1 3x=pi, then (A) x=0 (B) x=1 (C) x=-1 (D) xepsilonphi

The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2))dx ,\ is 1 b. -1 c. 0 d. pi//4