Home
Class 12
MATHS
A function is defined parametrically by ...

A function is defined parametrically by the equations `f(t)=x=2t+t^2sin^-1t , t!=0` and `f(t)=x=0 , t=0` and `g(t)=y=t-sint^2 , t!=0` and `g(t)=y=0 ,t=0` find the equation of the tangent and normal at the point for `t=0` if it exists.

Promotional Banner

Similar Questions

Explore conceptually related problems

For the functions defined parametrically by the equations f(t)=x={{:(2t+t^(2)sin.(1)/(t),,,tne0),(0,,,t=0):} and g(t)=y={{:((1)/(t)"sint"^(2),t ne0),(0,t =0):}

For the functions defined parametrically by the equations f(t)=x={{:(2t+t^(2)sin.(1)/(t),,,tne0),(0,,,t=0):} and g(t)=y={{:((1)/(t)"sint"^(2),t ne0),(0,t =0):}

For the functions defined parametrically by the equations f(t)=x={{:(2t+t^(2)sin.(1)/(t),,,tne0),(0,,,t=0):} and g(t)=y={{:((1)/(t)"sint"^(2),t ne0),(0,t =0):}

Let a function y=y(x) be defined parametrically by x=2t-|t|y=t^(2)+t|t| then y'(x),x>0

Let a function y = y (x) be defined parametrically by x = 2t - |t|, y =t^2 +t|t| . Then y^(1) (x), x gt 0

A cure is represented parametrically by the equation x=f(t)=a^(In(b^t)) and y=g(t)=b^(-In(a^t))a,b gt0 and a = ne 1, b ne 1 where t in R The value of (d^2y)/(dx^2) at the point where f(t) = g(t) is