Home
Class 11
MATHS
" 19.Let "k=1^(@)," then prove that "sum...

" 19.Let "k=1^(@)," then prove that "sum_(n=0)^(88)(1)/(cos nk*cos(n+1)k)=(cos k)/(sin^(2)k)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let k=1^@ , then prove that sum_(n=0)^88 1/(cosnk* cos(n+1)k)=cosk/sin^2k

Let k=1^@ , then prove that sum_(n=0)^88 1/(cosnk* cos(n+1)k)=cosk/sin^2k

Prove that sum_(k=1)^(n)(1)/(k(k+1))=1-(1)/(n+1).

Prove that: sum_(k=1)^(100)sin(kx)cos(101-k)x=50sin(101x)

Prove that sum_(k=1)^n 1/(k(k+1))=1−1/(n+1) .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that: sum_(k=1)^(100)sin(k x)cos(101-k)x=50"sin"(101 x)