Home
Class 12
MATHS
" 1."(dy)/(dx)=sqrt(4-y^(2))...

" 1."(dy)/(dx)=sqrt(4-y^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (dy)/(dx)=sqrt(4-y^(2))

Solve (dy)/(dx) = sqrt((4-y^(2))/(4-x^(2)))

The solution of x^(2) (dy)/(dx) = sqrt(4 - y^(2)) is

Solve the following differential equations. (i) (dy)/(dx) =(1+y^(2))/(1+x^(2)) (ii) (dy)/(dx) = (sqrt(1-y^(2)))/(sqrt(1-x^(2))) (iii) (dy)/(dx) = 2y tan hx (iv) sqrt(1+x^(2))dx + sqrt(1+y^(2))dy = 0 (v) (dy)/(dy) = e^(x-y)+x^(2)e^(-y)

(dy)/(dx)=sqrt(4-y^(2))(-2ltylt2)

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))