Home
Class 12
MATHS
If x=a(cost+logtan(t/2)) , y=asint , eva...

If `x=a(cost+logtan(t/2))` , `y=asint` , evaluate `(d^2y)/(dx^2)` at `t=pi/3` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a(cost+logtan(t/2)) , y=asint , evaluate (dy)/(dx) .

If x=a(cos t+(log tan t)/(2)),y=a sin t evaluate (d^(2)y)/(dx^(2)) at t=(pi)/(3)

If x=a(cos t + log tan (t/2)),y=a sin t , then what is (d^2y)/(dx^2) at t=(pi)/3 .

If x=a(cost+1/2logtan'(t)/(2) and y=asint then find (dy)/(dx) at t=pi/4

If x=a(cost+logtant//2),y=asint, then (dy)/(dx)=

If x=cost+logtan(t/2),\ \ y=sint , then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2) at t=pi/4 .

x=a(cost+logtan(t/2)) , y=asint find dx/dt&dy/dt .

If x=asint\ and y=a(cost+logtan(t/2)) , find (d^2\ y)/(dx^2)