Home
Class 11
MATHS
int0^(pi/2)(x/(sinx))^2dx=...

`int_0^(pi/2)(x/(sinx))^2dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

if int_0^(pi)(x/(1+sinx))^2dx=A , then int_0^(pi)((2x^2).(cos^2(x/2)))/(1+sinx)^2 is equal to

int_0^(pi/2) (dx)/(4+sinx)

int_0^1(tan^(-1)x)/x dx is equals to int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx

If the value of int_0^pi(x/(1+sinx))^2dx=lambda , then find the value of the integral =int_0^pi[(2x^2*cos^2(x/2))/(1+sinx)^2]dx

int_0^1(tan^(-1)x)/x dx is equals to (a) int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx (c) 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx

int_0^1(tan^(-1)x)/x dx is equals to (a) int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx (c) 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx

int_(0)^(1)(tan^(-1)x)/(x)dx is equal to a) int_(0)^(pi/2)(sinx)/(x)dx b) int_(0)^(pi/2)(x)/(sinx)dx c) 1/2int_(0)^(pi/2)(sinx)/(x)dx d) 1/2int_(0)^(pi/2)(x)/(sinx)dx

Evaluate int_0^(pi/2)(cosx)/(1+sinx)^2dx

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx