Home
Class 12
MATHS
" Let "f(x)={[x^(n)sin(1/x^(2)),x!=0],[0...

" Let "f(x)={[x^(n)sin(1/x^(2)),x!=0],[0,,x=0],(n in I)" .Then "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},(ninI). Then

Let f(x) = {(x sin(1/x)+sin(1/x^2),; x!=0), (0,;x=0):}, then lim_(x rarr oo)f(x) is equal to

Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is continuous but not differentiable at x=0 . If

Let f(x)={{:(,x^(n)"sin "(1)/(x),x ne 0),(,0,x=0):} Then f(x) is continuous but not differentiable at x=0. If

Let f(x)={(x^(p)"sin"1/x,x!=0),(0,x=0):} then f(x) is continuous but not differentiable at x=0 if

Let f:R rarr R be defined by f(x)={x+2x^(2)sin((1)/(x)) for x!=0,0 for x=0 then