Home
Class 12
MATHS
tan(i log((a-ib)/(a+1b)))...

tan(i log((a-ib)/(a+1b)))

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (tan(i*log((a-ib)/(a+ib)))) is

tan (i log ((a-ib)/(a+ib))) = (i) ab (ii) (2ab)/(a^(2) -b^(2)) (iii) (a^( 2) -b^(2))/(ab) (iv) (2ab)/(a^(2)+b^(2))

tan(ilog((a+ib)/(a-ib)))=

Prove that tan(ilog_e((a-ib)/(a+ib)))=(2ab)/(a^2-b^2) (where a, b in R^+ )

Prove that tan(ilog_e((a-ib)/(a+ib)))=(2ab)/(a^2-b^2) (where a, b in R^+ )

Prove that tan(ilog_e((a-ib)/(a+ib)))=(2ab)/(a^2-b^2) (where a, b in R^+ )

tan{ilog((a-ib)/(a+ib))}=

Prove that tan(i log_(e)((a-ib)/(a+ib)))=(2ab)/(a^(2)-b^(2)) (where a,b in R^(+))

tan [ i log ((a - ib)/(a + ib )) ] is equal to : a) ab b) (2 ab)/( a ^(2) - b ^(2)) c) (a ^(2) - b ^(2))/( 2 ab) d) (2 ab)/( a ^(2) + b ^(2))