Home
Class 11
MATHS
[" (5) If "x>0,y>0,z>0" then prove that ...

[" (5) If "x>0,y>0,z>0" then prove that "(x+y)(y+z)(z+x)>=8xyz]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are distinct positive numbers,then prove that (x+y)(y+z)(z+x)>8xyz

If x + y + z = 0 , then prove that x^(3)+y^(3)+z^(3)= 3xyz

if x+y+z=0,then Prove that (xyz)/((x+y)(y+z)(z+x))=-1 where(x!=-y,y!=-z,z!=-x)

If x > 0, y >0, z > 0 and x +y + z = 1 , prove that (1+x)(1+y)(1+z)ge 8(1-x) (1-y) (1-z)

If xneynez and |[x,x^3,x^4-1],[y,y^3,y^4-1],[z,z^3,z^4-1]|=0 , then prove that : xyz(xy+yz+zx)=x+y+z

if x+y+z = 0 then prove that |{:(x,y,z),(x^2,y^2,z^2),(y+z,z+x,x+y):}|=0

If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x+ y + xyz = z .

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

If x+y+z=xyz , prove that x/(1-x^2)+ y/(1-y^2)+z/(1-z^2) =(4xyz)/((1-x^2)(1-y^2)(1-z^2))

If ("log"x)/(y - z) = ("log" y)/(z - x) = ("log" z)/(x - y) , then prove that xyz = 1.