Home
Class 12
MATHS
int(0)^(oo)(1)/(1+e^(x))dx=...

int_(0)^(oo)(1)/(1+e^(x))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)[(2)/(e^(x))]dx=

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

int_(0)^(oo)(1)/(1+x)^(4)dx=

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

int_(0)^(oo)(x)/(1+x^(4))dx=

I=int_(0)^(oo)(dx)/(1+e^(x))

Evaluate :int_(0)^(oo)e^(-x)dx

int_(0)^(oo)(2)/(e^(x)+e^(-x))dx