Home
Class 12
MATHS
" For a non -zero,real "a,b" and "c|[(a^...

" For a non -zero,real "a,b" and "c|[(a^(2)+b^(2))/(c),c,c],[a,(b^(2)+c^(2))/(a),a],[b,b,(c^(2)+a^(2))/(b)]|=alpha abc," then the values of "alpha" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If |((a^(2)+b^(2))//c, c, c),(a,(b^(2)+c^(2))//a,a),(b,b,(c^(2)+a^(2))//b)|=k(abc) then k=

For a non-co real a,b and c |((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(c^2+a^2)/b)|=alpha abc, then the value of alpha is -

For determinant |((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(c^2+a^2)/b)|=alpha abc, then the value of alpha is -

For a non-/cro real a,b and c |((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(c^2+a^2)/b)|=alpha abc, then the value of alpha is -

Show that , |[(a^2+b^2)/c,c,c],[a,(b^2+c^2)/a,a],[b,b,(c^2+a^2)/b]|=4abc

Show that , |{:((a^2+b^2)/c," "c," "c),(" "a,(b^2+c^2)/a," "a),(" "b," "b,(c^2+a^2)/b):}|=4abc

If a,b,c are non-zero distinct real numbers and a+b+c=0, then (a^(2))/(2a^(2)+bc)+(b^(2))/(2b^(2)+ac)+(c^(2))/(2c^(2)+ab)

If a , b , c are all non-zero and a+b+c=0 , then (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)= ? .