Home
Class 12
MATHS
यदि A+B+C=pi हो तो सिद्ध कीजिए कि - co...

यदि `A+B+C=pi` हो तो सिद्ध कीजिए कि -
`cosA+cosB-sinC=4"sin"C/2"sin"((pi)/(4)-(A)/(2))"sin"((pi)/(4)-(B)/(2))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Cos((pi)/(4)+A).Cos((pi)/(4)-B)-Sin((pi)/(4)+A).Sin((pi)/(4)-B)=

If cosA + cosB =4sin^(2)(C/2) , then

If cosA + cosB =4sin^(2)(C/2) , then

Prove that: cos((pi)/(4)-A)cos((pi)/(4)-B)-sin((pi)/(4)-A)sin((pi)/(4)-B)=sin(A+B)

cos((pi)/(4)+A) cos((pi)/(4) - B) + sin ((pi)/(4) +A) * sin((pi)/4-B)=

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))

If A+B+C=pi , prove that: "sin" A+"sin" B-"sin" C=4 "sin"(A)/(2)"sin"(B)/(2)"cos"(C)/(2) .

sin (pi/2) = 2 sin(pi/4) cos (pi/4)

If A + B + C = pi , prove that sin(A/2)+sin(B/2)+sin(C/2)=1+4sin((pi-A)/4)sin((pi-B)/4)sin((pi-C)/4)