Home
Class 10
MATHS
(n)2x^(2)-x+(1)/(8)=0...

(n)2x^(2)-x+(1)/(8)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of 2x^(2) - x + 1/8 = 0 are…

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If x^(2)-x+1=0 then the value of sum_(n=1)^(5)[x^(n)+(1)/(x^(n))]^(2) is:

If x^(2)-x+1=0 then the value of sum_(n=1)^(5)(x^(n)+(1)/(x^(n)))^(2) is

1+x+(1)/(2!)x^(2)+...+(1)/((2n)!)x^(2n)=0

If (1+x)^(n)=C_(0)+C_(1)+x+C_(2)x^(2)+...+C_(n)x^(n) show that, C_(0)-2^(2)*C_(1)+3^(2)*C_(2)-...+(-1)^(n)*(n+1)^(2)*C_(n)=0 (n gt 2)

The value of lim_(x rarr0)((e^(1))/(x))-(1+nx+(n^(2))/(2)x^(2))/(x^(3))(n>0) is

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)^(2)+(C_(1)^(2))/(2)+(C_(2)^(2))/(3)+.....+(C_(n)^(2))/(n+1)=((2n+1)!)/({(n+1)!}^(2))