Home
Class 10
MATHS
[" Using properties of determinant show ...

[" Using properties of determinant show that "],[|[a+b,a,b],[a,a+c,c],[b,c,b+c]|=4abc]

Promotional Banner

Similar Questions

Explore conceptually related problems

3. Using properties of determinants, show that :|[b+c,a,b] , [c+a,c,a] , [a+b,b,c]| = (a + b + c) (a-c)^2

Using properties of determinants, show that |(b+a,a,a),(b,c+a,b),(c,c,a+b)|=4abc

Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca] , [1 , c , a b]|=(a-b)(b-c)(c-a)

By using properties of determinants, show that : |[1,1,1],[a,b,c],[a^3,b^3,c^3]| = (a-b)(b-c)(c-a)(a+b+c)

Using properties of determinants, show that abs[[a,a^2,b+c],[b,b^2,c+a],[c,c^2,a+b]]=(b-c)(c-a)(a-b)(a+b+c)

By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2],[1,c,c^2]| = (a-b)(b-c)(c-a)

Using properties of determinant prove that |[a+b+c,-c,-b],[-c, a+b+c,-a],[-b,-a, a+b+c]|=2(a+b)(b+c)(c+a)

Using properties of determinants,prove the b+c,a,ab,c+a,bc,c,a+b]|=4abc

By using properties of determinants. Show that: |[a^2+1,a b, a c],[ a b,b^2+1,b c],[c a, c b, c^2+1]|=(1+a^2+b^2+c^2)