Home
Class 14
MATHS
1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5...

`1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)+1/(sqrt6+sqrt7)+1/(sqrt7+sqrt8)+1/(sqrt8+sqrt9)`

Promotional Banner

Similar Questions

Explore conceptually related problems

1/(sqrt7 - sqrt6)

1/(sqrt7 - sqrt6)

1/(sqrt7 - sqrt6)

Prove that: 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+1/(sqrt(4)+sqrt(5))+1/(sqrt(5)+sqrt(6))+1/(sqrt(6)+sqrt(7))+1/(sqrt(7)+sqrt(8))+1/(sqrt(8)+sqrt(9)) = 2

Prove that: 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+\ sqrt(4))+1/(sqrt(4)+sqrt(5))+1/(sqrt(5)+sqrt(6))+1/(sqrt(6)+sqrt(7))+\ 1/(sqrt(7)+sqrt(8))+1/(sqrt(8)+sqrt(9))=2

3+ 1/(sqrt(4)+sqrt(5))+1/(sqrt(5)+sqrt(6))+1/(sqrt(6)+sqrt(7))+1/(sqrt(7)+sqrt(8))+1/(sqrt(8)+sqrt(9))= a)4 b)3 c)2 d) 3-sqrt(8)

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

1/(sqrt7+sqrt6-sqrt13)=

Simplify 1/sqrt2+1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)+1/(sqrt6+sqrt8)

The value of [1/(sqrt9-sqrt8)]-[1/(sqrt8-sqrt7)]+[1/(sqrt7-sqrt6)]-[1/(sqrt6-sqrt5)]+[1/(sqrt5-sqrt4)] is A)6 B)5 C)-7 D)-6