Home
Class 12
MATHS
" (iv) "(6(8)^(n+1)+16(2)^(3n-2))/(10(2)...

" (iv) "(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^(n))

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify the following: (5^(n+3)-6x5^(n+1))/(9x5^(x)-2^(2)x5^(n))( ii) (6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^(n))

Simplify the following: (i)\ (5^(n+3)-\ 6\ xx\ 5^(n+1))/(9\ xx\ 5^n-2^2\ xx\ 5^n) (ii)\ (6(8)^(n+1)+\ 16(2)^(3n-2))/(10(2)^(3n+1)-7\ (8)^n)

Simplify (6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^(n))

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)]

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

Sum of n terms of series 12+16+24+40+.... (A) 2(2^(n)-1)+8n (B) 2(2^(n)-1)+6n(C)3(2^(n)-1)+8n(D)4(2^(n)-1)+8n