Home
Class 11
MATHS
lim(x-gt2^-)x/([x])!=lim(x-gt2^+)x/([x])...

`lim_(x-gt2^-)x/([x])!=lim_(x-gt2^+)x/([x])`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(n->oo)(2x^(2n)sin(1/x)+x)/(1+x^(2n)) then find (a) lim_(x->oo) xf(x) (b) lim_(x->1) f(x) (c) lim_(x->0) f(x) (d) lim_(x->-oo) f(x)

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

If f(x)={:{(2x+1,x le 0),(3(x+1),x gt 0):} . Find lim_(x to 0) f(x) and lim_(x to 1) f(x) .

Find lim_(x to 0)f(x) and lim_(x to 1)f(x) , where f(x)={{:(2x+3",", x le 0), (3(x+1)",", x gt 0):}

Find the limits (i) (lim)_(x->1)[(x^2+1)/(x+100)] (ii) (lim)_(x->2)[(x^3-4x^2+4x)/(x^2-4)]

If L=lim_(x->2) ((10-x)^(1/3) -2)/(x-2), then the value of |1/(4L)| is

If L=lim_(x->2) ((10-x)^(1/3) -2)/(x-2), then the value of |1/(4L)| is

If L=lim_(x->2) ((10-x)^(1/3) -2)/(x-2), then the value of |1/(4L)| is