Home
Class 12
MATHS
[" 15.If "cos x=(1)/(sqrt(1+t^(2)))" and...

[" 15.If "cos x=(1)/(sqrt(1+t^(2)))" and "sin y=(t)/(sqrt(1+t^(2)))," then prove that "],[qquad (dy)/(dx)=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos x =1/sqrt(1+t^(2)) , and sin y = t/sqrt(1+t^(2)) , then (dy)/(dx) =

If cos x =1/sqrt(1+t^(2)) , and sin y = t/sqrt(1+t^(2)) , then (dy)/(dx) =

If x = cos^(-1) (1/(sqrt(1+t^(2)))), y = sin^(-1) (t/(sqrt(1+t^(2)))) then dy/dx =

If x=sin^(-1)((2t)/(1+t^(2)))andy=tan^(-1)((2t)/(1-t^(2))), then prove that (dy)/(dx)=1 .

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 + t^(2)))), "find " (dy)/(dx)

The value of dy/dx , when cos x = (1)/( sqrt(1 + t^(2))) and sin y = (t)/(sqrt(1 + t^(2))) is

If x=sqrt(a^(sin^(-1)t)) then prove that (dy)/(dx)=(-y)/(x)