Home
Class 11
MATHS
Statement 1: For f(x)=sinx ,f^(prime)(pi...

Statement 1: For `f(x)=sinx ,f^(prime)(pi)=f^(prime)(3pi)dot` Statement 2: For `f(x)=sinx ,f(pi)=f(3pi)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: For f(x)=sinx ,f^(prime)(pi)=f^(prime)(3pi) Statement 2: For f(x)=sinx ,f(pi)=f(3pi)dot a. Statement 1 and Statement 2, both are correct and Statement 2 is the correct explanation for Statement 1 b. Statement 1 and Statement 2, both are correct and Statement 2 is not the correct explanation for Statement 1 c. Statement 1 is correct but Statement 2 is wrong. d. Statement 2 is correct but Statement 1 is wrong.

Statement 1: For f(x)=sin x,f'(pi)=f'(3 pi). Statement 2: For f(x)=sin x,f(pi)=f(3 pi)

Statement - I : for f(x)=sin x, f'(pi)=f'(3pi) Statement - II : for f(x) =sin x, f(pi)=f(3pi)

Statement -I : f(x) = sin x then f' (pi) = f' (3pi) Statement - (ii) : f(x) = sin x then f (pi) = f (3pi)

If f(x)=|cosx-sinx| ,find f^(prime)(pi/6) and f^(prime)(pi/3)dot

If f(x)=xsinx, then find f^(prime)(pi/2)

If f(x)=|cosx-sinx| , find f^(prime)(pi/6) and f^(prime)(pi/3) .

If f(x)=|cosx| , find f^(prime)(pi/4) and f^(prime)((3pi)/4) .

Statement - I : If f(x) = sinx, then f'(0) = f'(2pi) Statement - II : If f(x) = sin x , then f(0) =f(2pi) .

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)