Home
Class 12
MATHS
अवकल समीकरण (1+x^(2))sec^(2)ydy+2xtanydx...

अवकल समीकरण `(1+x^(2))sec^(2)ydy+2xtanydx=0` को हल कीजिये।
दिया है कि `y=(pi)/(4)` जब x=1

Promotional Banner

Similar Questions

Explore conceptually related problems

2e^(x)dx-sec^(2)ydy=0

Solve (1+x^(2))sec^(2)y dy +2 x tany dx =0, " given that " y = (pi)/(4) " when " x =1 .

e^(x)tanydx+(1-e^(x))sec^(2)ydy=0

Find the particular solution of the differential equation (1+x^(2))sec^(2)ydy+2x tany dx=0 , it is given that at x=1 , y=pi//4 .

Find the particular solution of the differential equation (1+x^(2))sec^(2)ydy+2x tany dx=0 , it is given that at x=1 , y=pi//4 .

sec^(2)x sinydx+(1+tanx)cos ydy=0

sec^(2) y tan x dy + sec^(2) x tan y dx = 0 , " when " x =y = pi/4

Solve :3e^(x)tan ydx+(1-e^(x))sec^(2)ydy=0

If 0<(x)<(pi/4) , then sec2x-tan2x=