Home
Class 11
PHYSICS
For a regular hexagon ABCDEF shown below...

For a regular hexagon ABCDEF shown below , prove that
`overset rarr(AB)+ overset rarr(AC) +overset rarr(AD) +oversetrarr(AE)+oversetrarr(AF) = 6oversetrarr(AO).`

Text Solution

Verified by Experts

Using triangle law of vector addition , we have
`vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)`
`=vec(AB)+(vec(AD)+vec(DC))+vec(AD)+(vec(AD)+vec(DE))+vec(AF)`
`=3vec(AD)+vec(AB)+vec(DC)+vec(DE)+vec(AF)`
`=3vec(AD)+(vec(AB)+vec(DE))+(vec(DC)+vec(AF)) {:(( :. vec(AB)=-vec(DE)),(vec(DC)=-vec(AF))):}`
`=3(2vec(AO))+vecO+vec(O)`
`=6(vec(AO))`
Hence proved
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (1)|8 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (2)|9 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos
  • MOTION IN A STRAIGHT LINE

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|16 Videos

Similar Questions

Explore conceptually related problems

Let overset(rarr)C = overset(rarr)A+overset(rarr)B then :

overset(Zn)rarr ?

overset(Zn)rarr ?

overset(Zn)rarr ?

overset(Zn)rarr ?

Fill in the blanks : (i) overset rarr(tau) = overset rarr(r ) xx … (ii) overset rarr(L) = overset rarr(r ) xx …

Projection of overset(rarr)P on overset(rarr)Q is :