Home
Class 11
PHYSICS
For two vectors vecP and vecQ , show tha...

For two vectors `vecP and vecQ` , show that
`(vecP+vecQ)xx(vecP-vecQ)=2(vecQxxvecP)`

Text Solution

AI Generated Solution

To prove that \((\vec{P} + \vec{Q}) \times (\vec{P} - \vec{Q}) = 2(\vec{Q} \times \vec{P})\), we will start by expanding the left-hand side using the distributive property of the cross product. ### Step-by-Step Solution: 1. **Start with the Left-Hand Side (LHS)**: \[ \text{LHS} = (\vec{P} + \vec{Q}) \times (\vec{P} - \vec{Q}) \] ...
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (1)|8 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (2)|9 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos
  • MOTION IN A STRAIGHT LINE

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|16 Videos

Similar Questions

Explore conceptually related problems

For any two vectors vecp and vecq , show that |vecp.vecq| le|vecp||vecq| .

if vecP +vecQ = vecP -vecQ , then

Let vecq and vecr be non - collinear vectors, If vecp is a vector such that vecp.(vecq+vecr)=4 and vecp xx(vecq xx vecr)=(x^(2)-2x+9)vecq" then " +(siny)vecr (x, y) lies on the line

If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. Vecb =0 then prove that (vecbxx(veca xx vecb))/(vecb.vecb)=vecq

If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. vecb =0 then prove that (vecbxx(veca xx vecb))/(vecb.vecb)=vecq

What is the angle between vecP and the resultant of (vecP+vecQ) and (vecP-vecQ)

For three vectors vecP, vecQ and vecR, vecP+vecQ=vecR and P+Q=R Then prove that vecP and vecQ are parallel to each other.

Two vectors vecP and vecQ that are perpendicular to each other are :