Home
Class 11
PHYSICS
For tow vectros vec A and vec B | ve...

For tow vectros ` vec A` and `vec B`
` | vec A + vec B| = | vec A- vec B|` is always true when.

A

`|vecA|=|vecB|ne0`

B

`vecA bot vecB`

C

`|vecA|=|vecB|ne 0 and vecA and vecB` are parallel or antiparallel

D

when either `|vecA| or| vecB|` is zero

Text Solution

Verified by Experts

The correct Answer is:
B, D

(b,d): Given `|vecA+vecB|=|vecA-vecB|`
or `sqrt(|vecA|^(2)+|vecB|^(2)+2|vecA|vecB|cos theta)`
`=sqrt(|vecA^(2)|+|vecB|^(2)-2|vecA|vecB|cos theta)`
or `4|vecA|vecB|cos theta=0`
Here, `|vecA|ne0 "or" |vecB|ne0`, therefore, `cos theta =0`
i.e. `theta=90^(@)`
which implies that `vecA _|_ vecB.` When either `|vecA|` or `|vecB|` is 0 then `|vecA|vecB|=|vecA-vecB|`
The correct options are (b) and (c).
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise COMPETITION FILE OBJECTIVE TYPE QUESTIONS (INTEGER TYPE QUESTIONS)|10 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos
  • MOTION IN A STRAIGHT LINE

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|16 Videos

Similar Questions

Explore conceptually related problems

For any two vectors vec a and vec b write when |vec a+vec b|=|vec a-vec b| holds.

If vec A + vec B = vec A -vec B , then vec B is a

if | vec a | = | vec b | = | vec a + vec b | = 1 then | vec a-vec b |

For any two vectors vec a and vec b, we always have |vec a+ vec b|<=|vec a|+|vec b|

If vec A + vec B = vec A- vec B , then vec B is a…………………………….. .

For non-zero vectors vec a and vec b if |vec a+vec b|<|vec a-vec b|, then vec a and vec b are

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

If vec a + vec b = vec c and | vec a | = | vec b | = | vec c | find the angle between vec a and vec b

Non-zero vectors vec a, vec b and vec c satisfy vec a * vec b = 0, (vec b-vec a) (vec b + vec c) = 0 and 2 | vec b + vec c | = | vec b -vec a | If vec a = muvec b + 4vec c then possible value of mu are